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Organization

Section 1 introduces my topic of research. Section 2 is devoted to an exposition
of current applications of my work: prescription of high Poincaré profiles in
§2.1, relations between isoperimetry and Poincaré profiles in §2.2, groups with
logarithmic separation profile in §2.3, and cryptographic hash functions in §2.4.

1 My topic of research

My topics of research lie in the intersection of geometric group theory, metric
geometry and graph theory. I’ve devoted most of my work in the study of the
coarse geometry of finitely generated groups. To do so, I have developped ap-
plications of invariants called separation profile and Poincaré profiles, that has
their roots in finite graph theory.

Separation profiles were introduced by Benjamini–Schramm–Timár [2,8] in-
spired by the celebrated Lipton–Tarjan theorem on planar graphs [17] and works
from Miller–Teng–Thurston–Vavasis [21] for more general graphs.

Definition 1. Let G be an infnite graph. The separation profile of G is defined
for every positive integer n by sep(n) = supΓ |Γ|h(Γ), where the supremum is
taken among subgraphs Γ conaining at most n vertices, and h(Γ) denotes the
Cheeger constant of the graph Γ.

The main interesting property of the aforementioned profiles is that they
are monotonous under coarse embeddings (also known as uniform embeddings),
meaning that if there is a coarse embedding of bounded degree graphs G→ H,
then the profile of G is bounded above by that of H, up to constants.

Separation profile is thus a purely discrete tool. This profile has been general-
ized to analytic versions, involving p-Laplacians, by Hume-Mackay-Tessera [10],
obtained by replacing Cheeger constants by p-Cheeger constants in the defini-
tion above. All this led me to study deeply Cheeger problems, analysis in finite
graphs, and spectral graph theory.
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2 Some applications of my work

2.1 Prescription of high separation profiles

When studying such invariants, it is important to know what values they can
take, which led me to the study of the problem of the presciption of these profiles.
It is clear from the definition that any Poincaré profiles is least constant and
at most linear. It is then natural to ask what are the possible profiles within
this range. I’ve done the first computation of almost linear profiles coming from
amenable groups, using a family of groups constructed by Brieussel-Zheng in [6].
More precisely, I have proven the following statement:

Theorem 2. [13] There exists two universal constants κ1 and κ2 such that
the following is true. Let ρ : R≥1 → R≥1 be a non-decreasing function growing
fastly enough1. Then, there exists a finitely generated elementary amenable
group ∆ of exponential growth and of asymptotic dimension one such that for
any p ∈ [1,∞),

Π∆,p(n) ≤ κ1
n

ρ(log n)
for any n,

and Π∆,p(n) ≥ 4−pκ2
n

ρ(log n)
for infinitely many n’s.

The first application of this theorems concerns a theorem of Dranishinikov [7]
stating that any graph with finite asymptotic dimension coarsely embeds into a
finite profuct of trees. It is then natural to ask if these trees can be chosen having
bounded degree. The theorem above and the computation of the separation
profiles of products of trees [2] enables to prove that this is wrong in general:

Theorem 3. [13] There exist bounded degree graphs of asymptotic dimension
one that do not coarsely embed in any finite product of bounded degree trees.

The second application that I will mention here concerns distorsion and
hyperfinite graphs.

Bourgain showed in [4] that the p-distortion cp of any finite graph is bounded
by O(log n), where n denotes the number of vertices. It was proved to be optimal
for families of expander graphs [16, 20]. The bound was improved by Rao [22]
to O(

√
log n) in the case of planar graphs. Since any family of planar graphs

is hyperfinite [18], it is natural to ask if this bound is also valid for hyperfinite
graphs. This question was raised to me by Gábor Pete. I have proven that this
is wrong in general, by providing expicit examples of graphs with arbitrarily
large distortion exponent (but strictly below log).

Theorem 4. [13] For any ε ∈ (0, 1), there exists a hyperfinite sequence of
bounded degree graphs (Γn)n≥0, such that for any p ∈ [1,∞) there is K ′ =
K ′(p) > 0 such that for any n,

cp(Γn) ≥ K ′(log |Γn|)1−ε.

1I refer to the original paper for precise assumptions made on ρ
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2.2 Isoperimetric profiles

In [15] written with Antoine Gournay, we give among other things comparison
statements between separation profiles and isoperimetric profiles. This gave
many new estimates on the separation profile of amenable Cayley graphs. One
major application is the following theorem, stating that separation profile can
detect virtual nilpotence among solvable groups.

Theorem 5. [15] Let G be a finitely generated solvable group. If there exists
ε ∈ (0, 1) and c > 0 such that for any large enough integer n we have

sepG(n) ≤ cn1−ε,

then G is virtually nilpotent.

Combining this with the computaton of profiles of cocompact lattices in
hyperbolic spaces [2] and Bonk & Schamm’s embedding result [3], it has the
following corollary.

Corollary 6. Let G be a finitely generated solvable group. If there exists a
coarse embedding from G to a finitely generated hyperbolic group, then G is
virtually nilpotent.

This corollary was already obtained by Hume & Sisto [11], with a completely
different proof.

The methods of [15] also yield to local results on the infinite percolation
cluster of Zd, and more generally on a large class of graphs of polynomial growth,
called polynomial graphs. Roughly speaking, a (d1, d2)-polynomial graph is a
graph of volume growth bounded by nd2 and of isoperimetric dimension at least
d1. We introduce a local variant of the separation profile in this context, namely
the local separation at v, where v is a vertex of the graph:

sepvG(n) := sup
F<BG(v,r), |BG(v,r)|≤n

|F | · h(F ).

We show that
sepv

G(n)
n is bounded below by a function of the type n−α, for

every vertices in the polynomial case, and for vertices that stay exponentially
close to the origin in the Zd percolation case:

Theorem 7. [15] Let G be a (d1, d2)-polynomial graph. Then for any η ∈ (0, 1)
there exists c > 0 such that for any vertex v and any integer n we have

sepv(n) ≥ cn
(1−η)

d21(d1−1)

d32 .

The proof of this theorem is very algorithmic, I believe that this could lead
to interesting applications, in particular in data analysis.

Theorem 8. [15] Let C∞ be a supercritical phase percolation cluster of Zd.
Then for any ε ∈ (0, 1) there exists almost surely c > 0 such that for n large

enough, if ‖v‖∞ ≤ exp
(
n(1−ε) d

d−1

)
, then we have:

sepvC∞(n) ≥ cn
d−1
d .
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The inclusion in Zd shows that this lower bound is optimal.

2.3 Hyperbolic groups with logarithmic separation pro-
files

Every finitely presented group with separation profile bounded above by log,
but not equivalent to it, have a constant separation profile. This implies that
the group is virtually free (see [2,9]). Thus it is very natural to ask which groups
have a logarithmic separation profile. With Nir Lazarovich, we showed [12]:

Theorem 9. Let G be a hyperbolic group without 2-torsion. If sepG(n) �
log(n) then G can be inductively built from Fuchsian groups and free groups by
amalgamations and HNN extensions over finite or virtually cyclic groups.

This follows from Strong Accessibility by Louder-Touikan [19] and the fol-
lowing theorem.

Theorem 10. Let G be a hyperbolic group with sepG(n) � log(n), then G is
Fuchsian or splits over finite or virtually cyclic subgroups.

This theorem is showed using Bowditch’s boundary criterion for splittings
over cyclic groups [5]. Additionally, we show that the description of hyperbolic
groups with logarithmic separation profiles is not complete, since there is no
equivalence is Theorem 9. Indeed we provide in [12] an example of a surface
amalgam with superlogarithmic separation profile.

2.4 Higher dimensional Tillich-Zémor hash functions

Recently, I have been interested in applications of geometric group theory to
cryptography, more precisely to hash functions. A hash function is a map ϕ :
S → H, where all elements of H have the same “size”, satisfying the two
following properties:

• preimage resistance: given an element h ∈ H, it is computationally hard
to find s ∈ ϕ−1({h}),

• collision resistance: it is computationally hard to find two distinct ele-
ments of S having the same image under ϕ.

The general idea of Tillich-Zémor [23] hash functions is the following. Start-
ing at a base-point, the input to the hash function is used as a sequence of
directions for a walk in a regular graph without backtracking, and the output
of the hash function is the ending vertex of this walk.

With Christopher Battarbee, Ramón Flores, Thomas Koberda and Delaram
Kahrobaei, we have built in [14] new Tillich-Zémor hash functions of this type.
Using matrices A,B ∈ SLn(Fp) given by Goulnara Arzhantseva-Biswas in [1],
we obtain graphs Gn,p satisfying:

• the girth of Gn,p is at least cn log p for some constant cn,
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• the sequence (Gn,p)p is an expander.

These two properties are highly desirable for preimage and collision resis-
tance. To our knowledge, the only hash function proved to have these properties
were broken. Here, the flexibility on the dimension enables to increase complex-
ity of attacks.
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profile of infinite graphs. Groups Geom. Dyn., 6(4):639–658, 2012.

[3] Mario Bonk and Oded Schramm. Embeddings of Gromov hyperbolic
spaces. Geom. Funct. Anal., 10(2):266–306, 2000.

[4] Jean Bourgain. On Lipschitz embedding of finite metric spaces in Hilbert
space. Israel J. Math., 52(1-2):46–52, 1985.

[5] Brian H. Bowditch. Cut points and canonical splittings of hyperbolic
groups. Acta mathematica, 180(2):145–186, 1998.

[6] Jérémie Brieussel and Tianyi Zheng. Speed of random walks, isoperimetry
and compression of finitely generated groups. Ann. of Math. (2), 193(1):1–
105, 2021.

[7] Alexander Nikolaevich Dranishnikov. On hypersphericity of manifolds with
finite asymptotic dimension. Trans. Amer. Math. Soc., 355(1):155–167,
2003.

[8] David Hume. A continuum of expanders. Fund. Math., 238(2):143–152,
2017.

[9] David Hume and John M. Mackay. Poorly connected groups. Proc. Amer.
Math. Soc., 148(11):4653–4664, 2020.

[10] David Hume, John M. Mackay, and Romain Tessera. Poincaré profiles of
groups and spaces. Rev. Mat. Iberoam., 36(6):1835–1886, 2020.

[11] David Hume and Alessandro Sisto. Groups with no coarse embeddings into
hyperbolic groups. New York J. Math., 23:1657–1670, 2017.

[12] Nir Lazarovich and Corentin Le Coz. Hyperbolic groups with logarithmic
separation profile, 2021.
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